Microbial genetics

Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria, and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism. (Austin, "Genotype," n.d.) Genetic Engineering is a field of work and study within microbial genetics.[1] The usage of recombinant DNA technology is a process of this work.[1] The process involves creating recombinant DNA molecules through manipulating a DNA sequence.[1] That DNA created is then in contact with a host organism. Cloning is also an example of genetic engineering.[1]

Since the discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek during the period 1665-1885[2] they have been used to study many processes and have had applications in various areas of study in genetics. For example: Microorganisms' rapid growth rates and short generation times are used by scientists to study evolution. Robert Hooke and Antoni van Leeuwenhoek discoveries involved depictions, observations, and descriptions of microorganisms.[3] Mucor is the microfungus that Hooke presented and gave a depiction of.[4] His contribution being, Mucor as the first microorganism to be illustrated. Antoni van Leeuwenhoek’s contribution to the microscopic protozoa and microscopic bacteria yielded to scientific observations and descriptions.[4] These contributions were accomplished by a simple microscope, which led to the understanding of microbes today and continues to progress scientists understanding.  [5] Microbial genetics also has applications in being able to study processes and pathways that are similar to those found in humans such as drug metabolism.[6]

  1. ^ a b c d "Microbes and the Tools of Genetic Engineering | Microbiology". courses.lumenlearning.com. Retrieved 17 November 2018.
  2. ^ Gest, Hau (22 May 2004). "The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society". Notes and Records of the Royal Society of London. 58 (2): 137–201. doi:10.1098/rsnr.2004.0055. PMID 15209075. S2CID 8297229.
  3. ^ "BBC - History - Historic Figures: Antonie van Leeuwenhoek (1632 - 1723)". Retrieved 17 November 2018.
  4. ^ a b "antonie van leeuwenhoek: Topics by Science.gov". www.science.gov. Retrieved 17 November 2018.
  5. ^ Mortlock, Robert (2013). Microorganisms As Model Systems for Studying Evolution. Springer Verlag. p. 2. ISBN 978-1-4684-4846-7.
  6. ^ Murphy, Cormac D. (2 September 2014). "Drug metabolism in microorganisms". Biotechnology Letters. 37 (1): 19–28. doi:10.1007/s10529-014-1653-8. hdl:10197/7674. PMID 25179825. S2CID 16636885.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search